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Abstract. We investigatethe geometricstructure of the configuration spacefor
Yang-Mills Field Theory, namely, the structureof the space~‘ k of connections
of Sobolevclass Hk dividedby theaction of thegaugegroup~k4-1, i.e., thegroup
of H”~+ ‘-automorphismsof a principal bundleP. The main keyis to distinguishin
(gk+l a subgroup~‘~+l, the so-calledpointed group, with freeaction on ‘~~‘and
to consider the quotient space(~‘k/(~+ with an action of the compactgroup
~k+ 1/~-gk+1

For this action weprovea Slice Theoremanda Density Theoremwhichgiverise
to the stratification structureof the orbit space, thus also of the configuration
space.

INTRODUCTION

For a long time the physicalinteractionshavebeendescribedwith the aid of

gaugefields, connectionson suitable principal bundles.The group of automor-

phisms of the bundle determinesorbits in the spaceof all connections.Then,

physicists say that connectionsbelonging to one orbit are different only by a

gaugetransformationand describethe samephysicalsituation.Henceit is impor-

tant to investigatethe structureof the setof all orbits.

In the presentpaperwe study an actionof thewholegroupof automorphisms
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(gaugegroup) cg of an arbitrarycompactprincipal bundleP on thespace<6 of

connectionsseatedon P. The quotient spaceof this action coincideswith the

configurationspacefor Yang-Mills Theory.

Seee.g. Gribov [10], Singer [19], Narasimhanand Ramadas[16]. The study

of the aboveactionwasinitiated by Singer [19] in 1 978, who announcedseveral

interestingresultsfor S’1 as the basespaceusedby P. Gribov andSinger’sresults

were later investigatedby Narasimhanand Ramadas[16] for the caseof a trivial

SU(2) - bundle over S3 and S4. The proofs for a more general case.namely.

for nontrivial G-bundlesP overM were presentedby Mitter and Viallet El 5] in

1981. They consideredan action of the gaugegroup on the space<6
0c <6 of

irreducible connectionsor an action of the subgroup~‘ ~ C <6~consisting of

automorphismsfixing a given point of P, a so-calledpointed group, on <6. Both

thesecasesare simple from the mathematicalpoint of view, sincetheseactions

are free. As a result one cannot obtain the <<true>> configurationspacefor Yang-

-Mills Theory which coincideswith the spaceof all connectionsquotientedby

the whole groupof gaugetransformations.This problem wassolved in thepaper

[14] of Kondracki and Rogulski, where it was proved that the configuration

spacehas,in a naturalway, a stratification structureonto smoothfilbert mani-

folds.

It is well known that from a technicalpoint of view it is convenientto consider

theautomorphismsof P in the SobolevclassHk + 1 actingon theHk~connections,

where k> ~- dim M + 1. In this paperwe presentanapproachto thestructureof

the configurationspacefrom anotherside.We takethequotient space<6k/~k+ 1

and act on it by the compactgroupçg”~‘/g~ ~. It is seenthat the topological

space <6k/~k+1 is the same as ç~k/fqk+1 quotientedby <~k+1/<6~~+1, Since

cgk+ 1/<6k+ 1 is compact,this providessomesimplifications.
In Section 1 we introduce the notation and some earlierresults.The defini-

tion is given of cg0k+ 1 and the action of ~k+ 11~0k+ 1 ~ <6k/~0k+1 is proved to

be smooth. In Section 2 the existenceof a slice for the action<qk+ 11~’k+ on
<6k/~’0k+‘is established.This leadsto a suitabledecompositionof the manifold
<6k/e~ck+1upon the countablefamily of C~Hilbert submanifoldsandit follows

that the decompositionof the resulting orbit spacegivesa countablefamily of

C~ filbert manifolds. In Section 3 we prove a density theorem appropriate

for our purposesusingessentiallythestatementproved in [14]. This leadsto the

stratification structureof the configuration spacewhich is elaboratedin Section
4. The resulting stratification is different from and simplier than the stratifica-

tion obtained in [14]. It meansthat severalstrata of the stratification in [14]
can form onestratumin thestratification presentedhere.
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1. BASIC DEFINITIONS AND EARLIER RESULTS

We recall here a few definitions and some essentialfacts to make our paper

more self-contained.A smoothG-pnncipal fibre bundle overM is denotedby
(F, ir, M, G), where P and G are compact.The symbol ~ k will be used for the

gaugegroup of automorphismsof P of Sobolev class H”, i.e. diffeomorphisms
satisfying the following conditions. Let ir be the canonicalprojection ir :P-+M,
andlet p E ~ then we demandthat:

(1.1) 1° irop=lr

(1.2) 20 VgEG, VpEP sp(pg)=sp(p)g.

Frequently we shall refer to [14] to illuminate the statements. For each k, f4”

is a filbert Lie groupand it is also a closedsubgroupandsubmanifoldin the full

group of H”-diffeomorphismsP-÷P.Let (~kdenotetheaffine spacesof connec-

tions on P of Sobolev class H”, the <~karemodelledon a filbert space.

In what follows, we shall not give explicitly the definition of a connectionon

F. To specify, if necessary,we shall recall a connectionas a~g-valued1 -form on

P (~denotesthe Lie algebra of G) or as a distribution of horizontal vectors [11]

given on F.

For sufficiently large k (i.e. k> dimM + i) f~k+‘is allowed to act on

~ If we consider a connection a in the sense of a distribution on F, then one

can specify this action as follows:

(1.3)

It is known that this action is smooth and proper.Now, we considera sub-
groupof symmetriesof a givenconnectiona E

(1.4)

Wesay that p E Sa~if andonly if, spa= a.

Since the action of the gaugegroup ~~“+ 1 ~ cgk is proper it follows that
Sa is a compactsubgroupand thus it is also a Lie group. Moreover as shown

e.g. in [14] we may mention the following important fact. If two symmetries
s
1, ~2 E restricted to a chosenfibre 1~over x EM are equal, then s1 = on

F. Thus, obviously, every symmetry of a connectionis completly determined

by its valuesin one arbitrarily chosenfibre ofF. Let ustakenow a point x0 EM.
Let ~ + 1 bea subgroupof fqk + 1 givenby:

(1.5) ~+l~spE~k+l:sp~ =id}.
ir (XO)
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We shall call ~ + the pointed groupof gauge transformations of the Sobolev

class k + 1. Observefirst that there is no symmetry of any connectionwhich
is containedin <g~k+1 except for the identity. Moreoverçg

0k+ 1 is a normal and
closedsubgroup0f~k+ I

It is easyto seethat the quotientgroup~ actson the fibre 7T~(x0)

as a group of automorphisms.Choose a point p0E ir
1(x

0), then for every p E

E ~ ~ + 1 — there exists exactly one g E G such that p(p0) = p0g. Thus,
IT (xe)

one can distinguish a smooth antiisomorphismbetween~ k+ i~~k + 1 and the

structuregroup G. Thus jk+ l/eg~k+1 is compact. It is necessaryto emphasize
that the absenceof symmetriesof any connectionfrom the subgroup<6~k+ I

means that it acts freely on <g k Since this action is smoothand proper the
quotient spaces(~~~/fq~1 are separable,paracompact,metrizable Hilbert C~-
-manifolds,see [2]. We can also say that the <<essentialpart>> of the action of

the gauge group ~ k + 1 on ç~k is involved in the action of quotient group

~k+ 11~k+
1on gk

1cgk+ 1. Forsimplicity we introducethe notation:

(1.6) sdk= c~2k/~~+1 G~=~”/~~’.

As we havepointed out, the G” are in 1:1 correspondenceto thestructuregroup

G. On the other hand,the family of groupsG~’doesnot dependessentiallyon
k. In order to convince ourselvesthat the last mentionedaction is smoothwe
can argue as follows. Note that thapks to the free action of the pointed group

1 on ~ we havea cg~k+
1-principal fibre bundle ~ over d”. But ~ 1

is a normal subgroupof ¶~4~~4-i, thus ~‘~+ acting on c’i” inducesan action on
the base-spaced’~aswell. Now, we considerthe.diagram:

c5k+lXc~2k f

id®~I
(1.7) (gk+1~~k if d1~

Gkxdk~

where f, f’, f” denote the group-actions on its respectivestoreys.Since the
canonicalprojection iT in ~1~’is locally trivial, we~can choosea family of smooth
local sectionss to obtain ir ofos =f’. Obviously it does not dependon the

selectionof s. Finally, f is smooth,thus1’ is also,similarly it follows that f” is
smooth.
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2. SLICETHEOREM AND ITS CONSEQUENCES

In this section we shall prove the existenceof a tubularneighbourhoodor
equivalentlythe existenceof a slice for the action of G” on dk Thenwe shall

seeapplicationsof this. To start the game,however,we first establishthe defini-
tion.

Let X be a G-spaceand let Gx denotethe orbit of x E X.

DEFINITION. (U, F~ is called a tubular neighbotirhoodof a given orbit Gx, if

and only if, U is a G-invariant, open neighbourhoodof Gx andPr is a locally
trivial, G-equivariantretractionof U ontoGx, beinga smoothsubmersion.

By a slice in Uwemean I~1(y) fory E Gx.

Thus any slice forms a fibre of the bundle (U, Fr, Gx). On the other hand,

having oneslice only over e.g. y E Gx, we can recover the full tubular neighbour-
hood of Gx by the actionof G. The conceptof theslice of G-spacesis oneof

the most important tools in the analysis of local topological and geometric

structureson theorbit space.

THEOREM2.1. The action of G~’~ d” admits a slice for everypoint A E d”.

The proof which is, in fact, the constructionof a tubularneighbourhoodin

thestandardway, needsthe followingtopological lemma.

LEMMA 2.2. Let X; Y be matric spacesand let a mappingf : X —~ Y. be a local
homeomorphism.Supposethat f is a 1:1 mapping on a closedB C X and that
f~of(B) = B. Then there exists an open neighbourhoodW of B such that

f: W -+ f(W) is a homeomorphism.

Forthe proofof Lemma,seeBredon[4].

Since ~ is paracompact, it is possible to define a G”-invariant, smooth
Riemannianmetric. In order to do so, take a smoothR.iemannianmetric ‘y’

andthendefine

(2.1) ~= f ~*7’d~

where ~,1iE G”, here j1 is a Haarmeasurenormalizedto one.
Let us choose a point A E d k~Let NC T d”Ik be the set of all vectors
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orthogonalto GkA. ThenN with the naturalprojectioninducedfrom Tsd”~Gk
is a closed subbundlein Td” because it is the kernel of a smooth and

GkA
surjective vector bundle morphism, namely the orthogonal projection
~ GkA -÷ TGkA. We shall denote the natural G’<-equivariant projection in

Nby ~

Froof Observethe following identifications:

(2.2) TAd” = 7T~(A)~TA GkA = T0N, 0 E lrN(A),

where A E .rlk. Since exp~is the identity on TA ,~lkand hencealso on T0N,

we can find an open neighbourhood V C N of zero in the spaceirN’(A) such

that exp : V-+ d” has a derivative being an isomorphismin an arbitrary point
V E V. Thus exp : V-÷exp (V) is a local homeomorphism. Since ~yis GJc~invariant,

exp is G/c~equivariantand then we can supposeVto be Gk~invariant.Put X = V;
take B as the image of the zero section in N and f= exp in Lemma 2.2 then

by virtue of it thereexistsan openGk~invariantneighbourhoodW of the image

of the zero section in the bundle N such that W C V and exp : W -÷ exp(W) is

a homeomorphism, hence also a diffeomorphism. This way we have a tubular
neighbourhood(U,Fr)~ of GkA where U= exp WandFr=iTNexp~.

When it doesnot introduce any confusionwe shall usethe samenotationas

in (1.4) to denotetheisotropygroupSA C G” for a certainpoint A E d k

Selectthe following setof vectorsin lrN(A)

(2.3) N~A= {X E ir~(A): ~ E SA, ~ = x}

N~Ais a closedvectorsubspacein lrN(A).
By the lifting of the action Gk to Td

1’ and with the help of this action on

N~Awe obtain the set NSA C N. Obviously,NSA togetherwith irN is a closed

smoothsubbundleof the bundleN.

Let d be the set of all elementsof d k with their isotropygroupsconjugat-
edto a certainSA for somefixed pointA E d k

THEOREM 2.3. If SA C G” is the isotropy group of an elementA E dk. then
is a smoothsubmanifoldin d k Moreoverd is G1~-invariant.

Proof Since (U, Pr)A is an open neighbourhoodin d k of a certain point A C

E ~ it is sufficient to show that d~ fl U is a submanifold in U. In fact, we

easily have
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(2.4) exp(N~flexp~(U))Cd~fl U.

To show the oppositeinclusion, considerthe following. Let A C d~fl U and
exp - ‘(A) = X thus XE N fl exp ‘(Li). Then we have for s~iC SA expX = A =

SA
= ~4iA= s,L’ exp X = exp ~Ji~X. This means that XE N , since exp is here a
G’~-equivariantdiffeomorphism.Hencewe havetheidentity

(2.5) d~nU=exp(NS~~flexp’(U)).

But NSA is a smoothsubmanifoldin N andexp is a diffeomorphismon exp~(Li),
which togetherwith (2.5) completesthe proof. The G’-invariant propertyof

d~isa consequenceof NSA beingG<-invariant. •

Remark.The conjugacyclasses(5) of closedLie subgroupsSC G” correspondto

the submanifoldsd~5)in ~ Observe,in particular,that if S is not an isotropy

for anyA C d”, thend~ =

LEMMA 2.4. For anyA E d” thebundleNSA is trivial.

Proof We give an explicit form of mapping

(2.6) X:NGkAxiT~t(A)flNA.

Let XENSA. Choosean element~i C Gk in sucha way that ~i ITN(X) = A. Then
we put

(2.7) x(X) ~ (lrN(X), ~s~X).

At thesametime introducethe notation

(2.8) x(X) ~ (pr,(X),pr2(X))

x doesnot dependon the choice of ~, since for two different and l~f2,there

exists 5 C SflN~suchthat = ~2~’ By virtue of the definition of NSA we have

s~X= X. It is easyto verify thatx is asmoothbundleisomorphism.

Remark. Note that for any 1~E G~’and for any XE N
5A

(2.9) pr
2X=pr2Vi~X;

thismeansthatpr2 is G
1’-invanant.

Next considertheorbit spaceof the actionG” on d”. We define

(2.10) R”=d”/G’~.
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Then R” is a topological spacewhich is connected,separableand metrizable.

This follows sinced k is a metrizablespacewith G1’-invariant Riemannianmetric,

cf. (2.1).

Let usput

(2.11) R~=d~/Glc.

Obviously,we have

(2.12) Rk= U R~, since
ScGk

(2.13) d”= u
ScG’

wherethe abovesumsoverall S C G~caredisjoint.
Note that for each A C d”, there exists anyway the identity as the group

of isotropy.
We shall denoteby 1? the canonicalprojection d”—~’d”/G”. In the following

theoremwe show that R~is endowed,in a naturalway, with the C°~-filbert

manifold structure.

THEOREM 2.5. For any S C G” there exists a unique structure of C~-Hilbert
manifold on R~such that

(2.14)

is a smoothsubmersion.

Proof. Consider an orbit GkAC d~and its tubular neighbourhood(U, Fr)A.
Define a chart i~ on V = *(U fl d~l, namely, for v C V chooseA’ C i?

Thenput

(2.15) ~(v) = pr
2 O~ exp ‘(A’).

This g doesnot dependon thechoice of A’ by Remark(2.9);the mapping~<0 =

= pr2 o~0 exp
1 is continuousthusK is continuous. Note, moreover that i~ =

= o exp. This provesthat i~ is a homeomorphism.Whenever l’~fl 1’~C R~is

non-empty,the mapping

(2.16) ic
2o,ç’:W,—*W2

SA
whereh’çCir~(A~)flN‘,i=l,2,hastheform

(2.17) K20K1 =pr2ox2oexp~’oexp1.
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5A.
Theindicesof x andexp correspondto bundlesN ‘,i = 1, 2.

It is clearthat K
2 0 K~’ is smooth,so we haveon R~%thestructureof a smooth

filbert manifold. To prove that i~: d~—s’R~is a smooth submersion it is
sufficient to show that for any chart ~ the map K o ~ is a smooth submersion.
But this is clearbecause

(2.18) Kolr=pr2o(xoexp’)

is the compositionof the diffeomorphismx o exp
1 andthe smoothsubmersion

pr
2. Since ~ is now a submersion,the uniquenessof the smoothstructureon

R~follows from thegeneraltheoryof manifolds(seee.g. [2]).

This theoremgives the decompositionof the topological spaceR” into the

disjoint set-theoreticalsumof C~-HilbertmanifoldsR~.

PROPOSITION2.6. ThedecompositionofR” upon R~iscountable.

Froof Respectivemanifolds R~are labeledby suitable conjugacy classesof

isotropy groups. But in a compactlie group the numberof conjugacy classes
of closedsubgroupsis countable,see[12].

3. DENSITY THEOREM

The aim of this section is to show that if we considertwo submanifolds

C d” for S’C S, then d&) is dense in d~U d~.).Similarly for the
manifoldsR~C R”. Let usrecallseveralrelevantthings.

For a given connectiona C we denote its holonomy group in a point
x0EM by H°(x0).As is well known, this is a group of automorphismsof the
fibre 7r

1(x
0), andsince, asmentionedbeforein Section 1, G” is the groupof all

automorphismsof ir’(x0), wehaveHa(x0) C Gk.
Choosep~Cit ~(x~l. Considerthe set of all p C F which can bejointed with

p0 by a horizontal curve with respectto the connectiona. If M is simply con-
nected,then the aboveset is a closedsubbundleof the bundleF. Thissubbundle
we shall call the holonomy bundle of the connectiona C ~‘~‘ and denoteit by

See [17] for details.The structuregroupof thissubbundleis a subgroup
of G its action on p0E ir

1(x
0) yields Ytoa(p&fl ir’(x0). On the otherhand(cf.

Section 1) for fixed point p~,Eit
1(x~)we havean antiisomorphismG1’-÷G,

which allows us to set up a correspondencebetweenthe structuregroup in
andthe holonomygroupHa(x

0) for chosenp0E it

Wehavethe useful fact:
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THEOREM 3.1. Let M be simply-conected manifold dimM~ 2 and let k>

> ‘~- dim M + 1. .~*‘,C are connectedsubbundlesin P. Then every

-connectiona on F, with theholonomybundle = .)r, can beapproximat-
ed, in the senseof the H”-topology on <~‘~‘ by a sequenceofH1’-connectionsa~

on F with their holonomy bundles)~°‘2’1(p
0)= ~°2 for somefixed point p0EF.

Forthe proofof this theorem,see[14].
Let the connectiona be containedin the orbit A C ç~c~Then observe,that

(3.1) =S
a n’(x~1) A

In fact, taking two connectionsa1, a2 CA and pC f~k+ 1 suchthat spa1= a2 we

obtain~S~~~=S.Butspj ~ =id,thus
a2 iT (x&

(spS sp’)j -l =s -i =Sa I
a1 IT (x& a1 (x& 2 ir (x&

For G’ C G, CG’ denotes the centralizerof subgroupG’ in G. The following

straightforwardalgebraiclemmawill beuseful.

LEMMA 3.2. Let G1, G2 be subgroups of G, such that CG1C CG2. Then
C(G,G2)= CG,, where by G1G2 we mean the subgroupof G spannedby G1

and G2.

LEMMA 3.3. For anyconnectiona CA, with an orbit A C

(3.2) SA = CHa(x0).

Proof Consider p~C G”. Let a denotea smoothcurve in M startingat x0 C M

and with end point at x C M. By h0 we shall denotethe paralleltranslationalong
any curve a. Henceh0 is a morphism of the fibre ir’(x1) onto the fibre it~(x).
Define an automorphismof thefibre ir’(x) by:

(3.3) p~=h0p~h;’.

Note that if p C CHa(x0), then sp is independentof a choiceof a. In fact, ifxo x

we taketwo curvesa1 and a2 suchthat

(3.4) p~= h0 p~h;’= h0sp~h;’,

thenalso

(35) sp~=h0h~’h0~ h~’h0h~’2 2 1 0 1 2 2
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but h~h0 is an elementof the holonomy group with referencecurve 01 U ~

Now, varyingan arbitrary point x C M we obtain an automorphismof P determin-

ed by its action in the fibre ir’(x0). One can verify with theaid of local trivializa-

tion ofF that the automorphismso obtainedis a symmetryof theconnectiona.
For detailswe refer to [14]. In view of(3.l). the formula (3.2) holds. 1

Now, we proceedto provethemain theoremof this Section.

THEOREM 3.4. Let dim M ~ 2, let C G’~be an isotropy group of A C sd’~.

Supposethat S’ C
5A with A’ C dk such that 5’ is its isotropy group. Then

there existssequence{A~},A~—÷ A in d” wit/i 5A
0 =

Proof Choose the connectionsa. a’ from the orbits A, A’ C d” respectively.

For p0Cir’(x0) let us take all parallel translationsof p0 with respectto the

connectionsa and a’ along all curvesstarting at x0 and all their compositions.

The set obtainedin this way definessome connectedsubbundle .)~°of P. Note

that

(3.6) 1
6a(P

0)C ~CF.

By virtue of Theorem 3.1, there existsa~-~ain <6k such that ~W”~’1(p0)=

By the constructionof ~°, the holonomy group correspondingto connections

a~coincides with Hdl(x0)Huz’(x0). Moreover by continuity of the projection it

<6”-÷ d” we obtain the sequenceA~—+A in sd” But by lemma 3.2.

C(Ha(x0)Ha’(x0)) =CH
0(x

0) and by lemma 3.3. CH’~(x0) = SA = 5’. Hence
we completethe proofwith SA = S’.

Let J denotethe set of conjugacy classesof all isotropy groups in G”. This

setcanbe endowedwith the following ordering.For ~ ~ Cf put

(S,) <(S2) ~ thereareS~C (S1) and ~2 C

(3.7) suchthat S1CS2.

From the definition of conjugacy class we have immediately that each group

C (S2)containssomegroup from the class(S,).

COROLLARY 3.5. For ~ (S2) C J

(3.8) (Si) <(S2) ~ d~..) is densein d~.1 U d~).

(3.9) <(S2) ~ ~ is densein R~)U R&).
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UseTheorem3.4 and(3.7) for the proofof this Corollary.

4. STRATIFICATION STRUCTURE OF Rk

In this section we shall see that the decompositionof the topological space

Rk into smoothfilbert manifoldsR~is a stratification.
By the stratificationof a topologicalspaceX we mean:

DEFINITION. Let D be a countable(or finite) disjoint family of non-empty

subsetsof a topologicalspaceX. We require

(4.1) UD=X and

fore, ~‘CD

(4.2)

If moreovereach ~7CD has a smooth Hilbert manifold structurecompatible
with the topology induced from X then we shall call D a stratification of the

topologicalspaceX into smoothHilbert manifolds. U

(4.3) An element ~ CD is called astratum.

Every stratificationD distinguishesa partialorderinggiven as follows.
For ~, ~2’CD

(4.4) ~

It is easy to seethat < is a reflexive and transitive relation. Moreover for each

stratificationD of X and fora stratum~ CD. we have

(4.5) ~= U &~‘
0 <0

THEOREM 4.1. Thefamily D = {R~: (5) C J} is a stratification ofRk.

Proof It is sufficientto prove the assertion(4.2) sincethe othersarethe conse-

quencesof (2.12),Theorem2.5 andProposition2.6.
Considerd~= ~‘(R~) and choosethe set of orbits d~C d~ suchthat

the isotropy group of A C d~ is exactlyS. Observe,that ii(d~) = R~. Let us
verify that

(4.6) it(d~)= ~d).

The inclusionfrom left to right is obvious.To seetheconverseinclusion notethat
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~ is closed, since we deal with the action of compactgroup Gk. (See[4]). Thus

is closedandcontains~ henceit containsalso
Now,weprovethat d~ containspoints with the isotropygroup 5’ ~ 5. This

is true, becausetaking the convergentsequenceAkC d~’ and acting on it with
an elementof S we obtain the isotropygroup 5’ DS of the limit A Csd,~.From
(4.6) we have

(4.7) ~(d) = ~(d~) =

Now,if R~)n R~=4 thenSc 5’ andalso(S)<(5’). By thevirtueof Corollary

3.5 R~is densein R~U R&). ThusR~U R~)CR~andthe R~)CR~. •

Remarks

Analyzingthe aboveproofwe easily get that

(4.8) R~<R~)~(5) <(5’)

wherewe haveuseda consistentorderingrelation for bothsides.
In [14] a strongernotion of stratification was investigated,namely, it was

demandedthat

(4.9) ~7,~l’ ED, ~2n ~‘ ~ =~.&Z’ n ~ =

A stratification which fulfils this condition is called a regular stratification.
(4.9) assuresthat the partial ordering in the setof stratabecomesan ordering.

Also it wasshown in [13] thateverystratification of a Hausdorffspaceis regular.

Of courseRk is aHausdorffspace,sinceit is matrizable.
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